
Overview
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changes: color as clue
and distraction
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In a snapshot, a scene consists of things, but across time, the world consists
of processes. Some are cyclical, for example, trees changing foliage through the
seasons, surfaces getting wet and drying out; others are unidirectional, for example,
fruit ripening and then decaying, or dust accumulating on surfaces. Chemical and
physical properties of objects provide them with specific surface patterns of colors
and textures. When endogenous and exogenous forces alter these colors and
textures over time, the ability to identify these changes from appearances can
have great utility in judging the composition, state, and history of objects. This
short review presents thoughts on studying visual inferences of the properties of
materials and their changes, including how to acquire calibrated images of time-
varying materials, how to model time-varying appearance changes, how to measure
observers’ identification abilities, and how to parse out the perceptual qualities
that help or hinder in recognizing materials and their states. For instance, if color
information is removed, observers do significantly worse at recognizing materials
and their changes, especially for organic materials. The role of color in object
and scene recognition is still being debated, so elucidating color’s role in material
identification may also help to resolve the wider issue. This review introduces
material change as an object of study in human perception and cognition, because
the visual traces of changes are integral components of material and object identity.
Visually based judgments of materials share the property of propensity with mental
inferences, and conscious or unconscious visual imagery may play a role in setting
expectancies for object shapes and properties.  2011 John Wiley & Sons, Ltd. WIREs Cogn
Sci 2011 2 686–700 DOI: 10.1002/wcs.148

MATERIAL APPEARANCE AS CLUE
TO HISTORY

In studies of color constancy, each material’s
reflectance is assumed to be constant and the task

is to identify objects and materials across illumination
changes.1–8 However, material appearances often
change due to endogenous physical and chemical
processes such as ripening or decay, and exogenous
processes such as the effects of exposure to light, heat,
water, or dust.9,10 These changes provide rich and
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extremely useful cues to history. Look at Figure 1(a)
and judge whether this building has recently been
painted. When looking at the building, not only do we
discern that it has not been painted in some time, we
also recognize dirt as the cause of the darker pattern on
the façade. Similarly, one can judge that the chain in
Figure 1(b) has not recently been tied at this location.
The top part of the chain is not informative, but the
pattern of rust on the cobblestones gives the game
away. How do we figure out the nature of the relevant
cues and make inferences that approach veridicality?
In some cases, the physics of the situation is simple
enough to understand on a naı̈ve level.11 Figure 1(c)
illustrates how repeated rain can clean some parts of
a vertical surface and redeposit dirt on lower parts.

In other instances, such as judging the ripeness
of bananas from their appearance, the physics may
be too complicated, but it may be possible to explain
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(a) (b) (c)

FIGURE 1 | (a) Dirt accumulated on building. (b) Rust from chain on flagstones. (c) Diagram illustrates how dust on a vertical façade is washed
down by rain and redeposited as dirt lower on the surface, based on surface geometry and absorption. (Reprinted with permission from Ref 11.
Copyright 1996 ACM Press)
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FIGURE 2 | (a) Bananas ripening and decaying (Google Images). (b) Top: Samples from five materials. Middle: Red input over time as the material
changes. Bottom: Traces from middle panel superimposed on single curves using dynamic time-warping. (Reprinted with permission from Ref 12.
Copyright 2006 Association for Computing Machinery)

image variations by simple temporal processes. The
images of bananas in different stages of ripeness
as shown in Figure 2(a), differ in color and spatial
patterns, but since there is no reason to think that
one part of the banana is inherently different from
any other part, it is worth considering whether the
spatial variations arise because all points follow the

same temporal process but at different rates and
from different starting positions. To illustrate such
an analysis, the middle panel of Figure 2(b)12 plots
the input of the red sensor of a camera of three points
each on images of drying wood, rusting steel, burning
wood, decaying apple, and drying paper, acquired at
regular intervals during material changes. The bottom
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FIGURE 3 | (Top) Images of a glossy teapot and cup as dust accumulates. (Bottom) Simplified schematic of possible light paths through dust,
water-color, oil-paint, and clear liquid covering a moderately rough surface. (Reprinted with permission from Ref 21. Copyright 2006 European
Association for Computer Graphics)

panel shows that the three curves for each material
can be superimposed on a single curve when they
are appropriately compressed or expanded on the
time-scale, and placed on the proper segments, by
using dynamic time-warping.13 These unifying curves
represent the dominant process, for example, each
part of the banana skin turns yellower as chlorophyll
is replaced by carotene. The spatial pattern is assumed
to arise from the temporal differences, so a test of
the model is to see if random variations in temporal
parameters recreate typical spatial pattern changes.

In other cases, even though there may be just one
cause for the changes, the time-varying spatial patterns
are of primary importance. For example, Figure 3(a)
shows that the perceptual effects of accumulating
dust include changing degrees of translucency, dust
shadows, loss of specular highlights, and color
mixtures between the dust’s color and diffuse object
colors. Similarly, the appearance of a freshly painted
surface is highly specular, but as the liquid medium
dries, the specular component diffuses out. Figure 3(b)
provides schematics of typical light paths through
dust, water-color, oil-paint, and water covering a
moderately rough solid surface. As time passes, the
layer of dust gets thicker, paints get denser, and water
evaporates. These processes lead to quite different
spatially distributed changes in appearance. The basic
physical measurement for material appearance is the
bidirectional reflectance distribution function (BRDF),
which defines for each point of a surface the fraction
of light incident from each direction that is reflected in
each direction.14 For some purposes, it is necessary to
measure spectrally-sampled and time-varying variants
of the BRDF. To summarize the enormous data

constituting BRDFs, with a reasonable number of
parameters, a number of phenomenological and
physical models have been proposed,15–19 but there
are many details that they are unable to capture.20

Modeling time-varying BRDFs requires more than
just making the parameters a function of time, it
also requires considering more factors, for example,
the diffuse color shifts resulting from paint drying,
are affected not just by the colors of the paint and
the surface, but also by the thickness of the paint
and the absorbance of the material. For particular
processes like paints drying and dust accumulating,
it has been possible to reproduce appearance changes
reasonably well by combining multiple analytic BRDF
models and fitting them to particular time-varying
perceptual qualities like specularity.21

ACQUIRING IMAGES
OF TIME-VARYING MATERIALS

Before figuring out how something is done, it is impor-
tant to figure out if it can be done, i.e., prior to
testing which classes of computational models are
relevant to human perception, it needs to be estab-
lished what kinds of materials and their changes can
be recognized by human observers, and whether this
can be done without object-shape and time-course
cues. Since it is unrealistic to have observers contin-
uously monitor slowly changing real materials, it is
necessary to acquire images that sample these changes
and that can be presented at experimentally con-
venient time-scales in realistic, random, or jumbled
sequences of altered images. Two considerations are
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FIGURE 4 | (a) A multi-light, multi-camera system designed to
acquire simultaneous images of changing materials from different
lighting angles and viewpoints,12 thus providing fine temporal and
angular resolution. (b) Four cameras mounted on robot arms that
permit rapid small movements coupled with a light-source that can
move inside a semi-circle.21 Correction added on May 25 2011, after
first online publication. Figure 4 was incomplete and has been replaced.

key in capturing time-varying BRDFs: the time sam-
ples should be close enough not to miss important
variations, and the angular domain should be sam-
pled densely to capture the high-frequency changes
due to specularities. Figure 4(a) shows a multilight,
multicamera system that has been used to acquire
calibrated time-varying measurements of materials.12

The system consists of an icosahedron dome with 16
calibrated cameras (1300 × 1030 pixels) placed at the
vertices, and 150 white LED lights evenly spaced at
the edges. This system is capable of acquiring multiple
images of a sample placed at the center and lit by com-
binations of multiple light sources simultaneously. In
conditions where the angular sampling of this system
is inadequate, but fewer viewpoints and sparser time-
sampling would suffice, a smaller number of cameras
can be mounted on a robot arm that permits rapid
small movements21 (Figure 4(b)).

TABLE 1 Twenty-Six Materials and Their Changes

Wood burning Rock drying Wood drying

Orange cloth drying Light wood drying White felt drying

Quilted paper drying Cardboard drying Wet brick drying

Apple core decaying Wood drying Green cloth drying

Banana decaying Steel rusting Leaf under humid
heat

Patterned cloth
drying

Apple slice decaying Granite drying

Tree bark drying Potato decaying Wood getting
charred

Waffle toasting to
burnt

Bread toasting to
burnt

Cast iron rusting

Copper oxidizing to
patina

Cast iron rusting

Table 1 lists 26 materials whose images were
acquired along with their natural or speeded changes
and Figure 5(a) shows the initial and final images of
each sequence.12 Samples of materials were allowed
to undergo either natural changes or the changes were
speeded along with the help of artificial aids like heat
or chemicals.

MATERIAL IDENTIFICATION
BY HUMAN OBSERVERS

To measure baseline performance for the materials
in Figure 5, Yoonessi and Zaidi22 presented square
fronto-parallel images one at a time on a calibrated
monitor. Condition 1 consisted of single initial images,
Condition 2 of the initial and last images of the
sequence, and Condition 3 of a complete sequence
of change images (the time frame did not reflect the
speed of the actual process). Observers were allowed
to view the images freely for as long as they liked, and
then typed the names of their choice for the material
and the change.

For studies of human perception, baseline data
are interesting only as a way to understand the
perceptual qualities underlying the performance. The
CIE has proposed color, texture, translucency and
gloss as the components of material appearance.23

This scheme is almost certainly incomplete, but
can provide a starting point. In particular, if the
chromatic information is removed (Figure 5(b)), it
leaves texture, gloss, and translucency essentially
unchanged. Hence, comparing performance levels for
identifying materials in colored images to performance
levels for the achromatic versions of these images
can reveal where color is an important cue. After
measuring a baseline for material and change
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FIGURE 5 | (a) Initial and last fronto-parallel images of the 26 material changes listed in Table 1. (b) Same images, but chromatic information has
been removed.

identification, a new set of observers repeated all three
conditions with achromatic images.22

Average material identification performance
(seven observers) is shown in Figure 6 as percent
corrects for the three conditions. With full color infor-
mation, observers identified 40% of the materials
correctly when given only the initial images. The error
bars represent variability across observers, and indi-
cate that these qualitative measurements were quite
reliable. There were some interesting confusions in
the single image condition: 7/7 observers responded
clay or tile for orange cloth. Clearly color cues can
mislead as well as reveal. In addition, 0/7 observers
identified bread correctly. Other frequent confusions
were water or stone for metal, stone for wood, and
paper and cloth for each other. It is possible that
identification of shiny (metal) and textured (bread)
materials may be difficult for planar surfaces in the
absence of 3D and/or motion information. Since the
Gu et al. set12 includes images of materials from mul-
tiple viewpoints and lighting directions, it should be

possible to embellish the recognition experiment either
by rendering 3D shapes, or by letting observers exam-
ine materials, while manipulating the viewpoint and
lighting. These manipulations should allow observers
to judge glossiness of materials by seeing if specu-
larities move across the surface,24 and to estimate
3D surface texture from the information provided by
varying viewpoints and illumination angles.25–28

When both the initial and final images were
available, performance went up to 60%, that is, seeing
a recognizable change across two states also helped
in recognizing the material. Surprisingly, performance
was improved less when observers were presented
with the whole sequence of changes than when they
saw just the pair of initial and final images. The
reasons for the performance decline are not clear to
us. These could include the confusions caused by the
conversion of time into spatial arrangements of images
for the experiment, and the possibility that observers
are more familiar with the beginning and end of the
temporal processes than with the in-between stages.
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FIGURE 6 | (a) Percent correct for material identification for initial images, initial plus final image, and complete sequence of images. (b) Odds
ratios comparing performance with and without color information.22

Figure 6 also addresses the role of color in mate-
rial identification. Comparing heights of the bars for
the gray-scale and color images, reveals that removing
color information had a detrimental effect on average
performance in all three conditions. The bottom plot
shows odds ratios for color over gray-scale conditions,
and confirms statistically that material recognition is
significantly worse without color cues.

In a study29 where materials were presented
as images of 3D objects, and observers were asked
to identify broad categories like leather or plastic,
identification performance was around 90% even
for rapid presentations. The images of flat materials
in Figure 5, were missing the 3D information that
correlates with glossiness, softness and many other
material qualities, and within category confusions,
for example, pear for apple, were considered to
be incorrect responses. To compare category-based
performance across the studies, the 26 materials were
informally divided into the five categories in Table 2.

When performance is tabulated for category
identification with full color images, performance goes

TABLE 2 Material Categories and Constituents

Organic Apple, potato, leaf, waffle, banana, . . .

Wood All types of woods

Mineral Rock, marble, granite, brick, . . .

Metal Copper, iron, . . .

Fabric Cloths, felts, paper, quilt, . . .
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FIGURE 7 | Percent correct identifications for material categories in
the three conditions.22

up to 70% for single images of some categories,
and even higher for the pair and sequence conditions
(Figure 7). Observers can thus recognize some cate-
gories of materials well, even for these impoverished
stimuli. Metals were the least correctly recognized
in static images of flat sheets, even when additional
images included rust or patina. Wood and miner-
als were recognized best in single images, probably
because of distinctive surface patterns. Color informa-
tion improved performance most for organic images.22

Color names in almost all languages have
historically been intrinsically bound to materials. The
earliest use of the word color seems to have been in the
13th century as skin color, the word white probably
came from bright or light, the word green comes
from the same Germanic root as grow, red shares
Greek roots with rust and ruddy, a large number of
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colors are named after animals (sable), plants (mauve),
insects (crimson), stones (turquoise), fruits (orange),
foods (chocolate), fabric (linen), metals (silver), and
so on. To earlier results that mental representations
of typical organic objects can bias color judgments,30

these results add evidence that color is an integral part
of the mental representations of material appearance.

CHANGE IDENTIFICATION
BY HUMAN OBSERVERS

Since the perception of material changes is a new
topic, to give an intuitive feel for the phenomena,
it is worth asking readers to look at some image
sequences in Figures 8–15, and to try to guess the
nature of the material and the change before reading
the description. (Note: In the experiment, the images
were acquired by calibrated cameras and displayed
on calibrated monitors for color fidelity with the real
materials, but the reproductions below are unlikely to
have the same degree of fidelity.)

The images in Figure 8(a) are of wood being
burned, but since there is no time-scale information,
observers also reported mold growing on wood, or
a dark stain being applied. Figure 8(b) consists of
images of a wet granite drying, but observers also
reported it as a change of illumination from shade
to light. Figure 8(c) seems to be very recognizable
images of decaying banana, but a couple of observers
reported wood getting charred. The images of a wet
fabric drying in Figure 8(d), were sometimes confused
as an illumination change, or a fabric being bleached.
Wood drying in Figure 8(e) was sometimes confused
as bleaching or wood being sanded. Figure 8(f) shows
wet felt drying, and the spatial pattern of drying may
be responsible for the absence of illumination change
reports. The images of a leaf drying in Figure 8(g) were
reported correctly by almost all observers despite the
lack of shape information, possibly because of the
conjunction of typical colors and patterns. Figure 8(h)
shows images of bread toasting and eventually
burning.

In recognizing material changes, when observers
had access only to the initial and final images, they
recognized the change on over 60% of the trials
(Figure 9). This is similar to material recognition
performance levels on the same trials. Again
surprisingly, observers were less accurate when shown
the full sequence of images. The advantage provided
by color cues is evident when comparing results for the
colored and achromatic images in the first two panels,
and the values of the odds ratios in the last panel. The
classes of materials where color information is not
helpful are particular candidates for analyses of spatial

cues. It would also be interesting to extract spatial
patterns for changes such as drying across different
classes of materials, and to judge if the changing
patterns are diagnostic for material recognition by
combining them with colors from other materials.

The most common confusions, wet with polished
or stained, drying with bleaching or illumination
increase, burning with mold, decaying with burning,
rusting with dirt/dust accumulating, and patina with
mold, reflect natural ‘metamers’, that is, physically
distinct processes that generate similar images. Some
of these changes would not be ‘metamers’ in real life
because they take different amounts of time, others
would not be ‘metamers’ if shape and multiview
information was also provided, for example, as fruits
and vegetables decay, they not only lose the visual cue
of glossiness, but also become softer which is reflected
in object shape rather than surface pattern, and the
texture of charred wood would easily distinguish it
from surface patterns formed by dark mold or stain.
Consistent and inconsistent conjunctions of surface
information with shape or texture could thus be used
to provide alternate probes for material perception.
For instance, observers could be asked to judge the
realism of a sequence of wood images with texture
changes consistent with burning but without the
corresponding color changes. Such experiments could
use the set of images taken from multiple viewpoints
and lighting directions.12

PARSING MATERIAL IDENTIFICATION
INTO PERCEPTUAL COMPONENTS

A major question is whether material appearance
can be reduced to a discrete number of perceptual
qualities, and whether perception of material changes
can be reduced to changes in these qualities. A
simple experimental strategy is to remove one or
more perceptual qualities and test identification
performance. Removing color information22 is easy,
but removing other qualities requires identifying
image parameters correlated with each property.
Besides the work on time-varying materials discussed
in the first section, considerable work has been done on
rendering classes of materials in static states, and some
work on the human perception of material qualities
like glossiness and translucency. From this work, two
sorts of stimulus analysis strategies can be adapted for
experiments with time-varying materials: those based
on BRDFs and those based on image statistics.31

Figure 10(a) shows spheres rendered from
BRDFs of a hundred different materials, demonstrat-
ing a large number of perceptual qualities.32 If the
BRDF for each of these materials is considered a
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FIGURE 8 | (a)–(h) What are these materials? What are the changes they are undergoing? See text for answers.

high-dimensional vector (each measurement forming
one element), then linear or nonlinear dimensional-
ity reduction can be applied to obtain a manifold of
between 15 and 45 dimensions that efficiently char-
acterizes all the BRDFs. These dimensions are similar
to the number of parameters in physics-based BRDF
models for textured surfaces.19 By having observers

choose exemplars of perceptual qualities like red-
ness, greenness, blueness, specularness, diffuseness,
glossiness, metallic-like, plastic-like, roughness, sil-
verness, gold-like, fabriclike, acrylic-like, greasiness,
dustiness, and rubber-like,32 methods like support vec-
tor machines33 can be used to generate linear functions
that correspond to variation along the percepts in the
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FIGURE 8 | Continued.

low-dimensional manifold. Even though this method
does not lead to a list of independent qualities, as some
sets of qualities above lead to correlated percepts, the
BRDF subspace correlates can be used to manipu-
late the values of particular qualities (Figure 10(b)).
Images that increase or decrease certain qualities can
then be used in experiments to identify the qualities
critical for recognizing material changes.

The earliest analysis of human perception of
material appearance, seems to have been Helmholz’s
demonstration that the percept of luster was due to
stereoscopic luminance conflict.34 However, it is only
recently that substantial work has begun on human

material perception, and most of it has concentrated
on isolated visual properties like gloss, which is
an important clue to the state of many materials,
for example freshness of fruits and vegetables. A
pioneering approach explored the role of image
statistics in material appearance,35 and was successful
in identifying skewness of the image histogram
as a particular correlate of glossiness. However,
histograms do not reflect spatial structures of images,
for example scrambling pixels leaves the histogram
unchanged but completely changes appearance, and it
is possible that in some cases geometric information
is also required to properly judge the glossiness of
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(a) (b)

FIGURE 10 | (a) Spheres made from a 100 different materials, demonstrating a large number of perceptual qualities: redness, greenness,
blueness, specularness, diffuseness, glossiness, metallic-like, plastic-like, roughness, silverness, gold-like, fabriclike, acrylic-like, greasiness, dustiness,
rubber-like, and others. (b) Simulations of increases in redness, silver, gold, and specularity from left to right, in first to fourth row, respectively.
(Reprinted with permission from Ref 32. Copyright 2003 Association for Computing Machinery)

a surface.36 In addition, change in organic objects
may alter some geometric properties. These problems
may explain why histogram skewness was found to
be insufficient to predict changes of glossiness in
images of vegetable decay.37 Despite these caveats
the ability to control material qualities in an image
by just manipulating the histogram is invaluable for
experimental purposes.

A more observer-based approach showed that
apparent gloss of spheres in achromatic images
could be well represented in a 2D space by
multidimensional scaling of dissimilarities in perceived
gloss. The dimensions were then related to perceptual
primitives like perceived lightness.38 More direct
approaches for discovering perceptual primitives
underlying material qualities, have related perceived
brightness and contrast to perceived albedo39,40 and
transparency.41,42 For instance, thin neutral density

filters are defined by the physical values of reflectivity
and inner-transmittance. Observers found it easy to
manipulate either of the physical values to match
the perceived transparency of filters differing in both
values. At the match points, observers were shown
to equate perceived contrast, which turned out to
correlate perfectly with total transmittance through
the filter.41 The abstracted quality of perceived
transparency is thus 1D in a space that includes
perceived contrast as one of the dimensions. However,
none of the metrics proposed in the literature
were able to predict perceived contrast,41 which
itself may be multidimensional in other spaces.
Consistent with this view, a meticulous analysis
of translucency,43 combining psychophysics with
graphical simulations of subsurface light transport,
elucidated the complexity of the percept, showing
that translucency was enhanced by highlights, the
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(a) (b)

FIGURE 11 | (a) Similar objects made of different materials. (b) Different objects made of similar materials.

sign of the correlation between intensity and color
saturation, decrease in object size, perceived contrast,
blur, and back-lighting. If image statistics are used,
they are from selected regions, especially the edges of
the object.

One way to go beyond simple image statistics is
to exploit the relative success in computer vision of
statistics of local oriented multi-scale filters in identify-
ing scenes, objects, and materials.44–46 However, even
when a number of these methods were combined in an
optimal learning algorithm and tested on an extensive
database, the model performed only about half as well
as human observers.29 As was done for the BRDF data,
it may be worthwhile forming vectors from the out-
puts of these filters, reducing them to low-dimensional
manifolds, and then using observer ratings of mate-
rial qualities to estimate functions that covary with
subjective impressions. These functions could then
be used in image manipulations for psychophysical
experiments.

MATERIAL HISTORY AS CUE
FOR OBJECT IDENTIFICATION

Research on human perception of material appearance
provides a necessary complement to object recognition
studies.47 Picture the following objects in your mind,
one at a time: a coat, a brown coat, a brown plastic
raincoat, a brown wool coat, a wet brown plastic
raincoat, a wet brown wool coat. Notice that material
description can be an inherent part of object identity,
hence from the second object on, picturing the coat
requires envisioning material qualities, such as the
softness of wool versus the relative stiffness of plastic,
and the difference in appearance of more versus less
absorbent wet materials. Material identification is thus
an integral part of object perception, especially when
objects have to be used for particular purposes like
warmth or waterproofing. Deciphering the physical
cues that signal qualities and states of materials,
and understanding how these cues are acquired
and processed by the visual system, will require

combinations of computational, psychophysical, and
neural techniques. Given the newness of the field, it
is premature to aim for a consensus about areas and
methods of study, so this review has highlighted the
diversity of work on this topic.

Appearance related investigations can use
analytical strategies that try to identify the roles of
individual factors by subtracting the effects of others,
or synthesizing strategies that try to identify the
effects of factors by adding them on top of other
factors. Figure 8 demonstrates an analytic approach
that removes the effects of object identity and shapes
to isolate perceptual factors. However, removing 3D
and motion information and using artificial lighting
conditions may be removing critical clues, since object
shape can influence material inferences,48,49 motion of
reflections is a critical cue to shininess,24 and natural
lighting provides useful variations.50 A clever synthetic
strategy for judging material identity of properties, is
to use different objects made of the same materials
or similar objects made of different materials29

(Figure 11). An interesting informal observation, that
will need to be tested, is that in some cases where
materials are used in ‘un-natural’ ways, for example,
when paper is made stiff enough to form a chair, or a
plaster cast is made to look like a soft robe, observers
are often able to identify both the material and the
artifice (Figure 12).

This review introduces material change as an
object of study in human perception and cognition. A
primary motivation is that the visual traces of changes
are integral components of material and object iden-
tity. The material of a shiny sphere is more likely to
be recognizable if the sphere has a history embodied
as scratches, dents, etc. because paint would show
chipping, plastic would show scratches, and metal
would show dents. For example, it is difficult to
judge if the three shiny spheres in Figure 13 are glass
or metal, wood or stone, and plastic or mud from
left to right. (Note: they are metal, wood, and mud,
respectively) On the other hand, the three weathered
spheres in Figure 14 are easy to discern as metal,
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(a) (b)

FIGURE 12 | (a) Paper chair; (b) plaster robe.

(a) (b) (c)

FIGURE 13 | What are the materials of these shiny spheres? (a) Glass or metal? (b) Wood or stone? (c) Plastic or mud?

wood, and mud because of tarnish, chipping, and
cracking, respectively.

In understanding the visual parsing of material
history, physics-based models are likely to be use-
ful, as the visual system has been shown to exploit
physics of situations for many different perceptual
inferences.39,41,51,52 The perceptual system, however,
can have its own internal logic independent of physical
laws. As discussed earlier, material change ‘metamers’
arise naturally when different physical processes
generate similar images. Consequently, when image
changes are correlated with physical models, mul-
tiple models will have to be considered in many
circumstances. On one hand, observers can perceive
transparency and translucency in conditions that are
physically incompatible with the phenomena,43,53

especially in images with isoluminant colors, and
on the other, observers do not always use available

information that would simplify an identification
task.7,52,54

Possibly the most important quality of visually
based judgments of materials, is that they share the
property of propensity with mental inferences like
judging the personality of a person. For example,
surmising properties such as soft, stiff, brittle, dull,
rancid, sticky, or slippery from visual information, in
essence makes predictions for visual appearances in
other states of the material, and for the outputs of
other sensory modalities and motor actions applied
to the material. For example, a rectangular sheet of
cloth stretched on a level surface could have a simi-
lar geometrical shape to a thin slab of limestone. If
sufficient image clues are present about the identity
of the materials, observers would accept the image in
Figure 15(a) as a probable alternate state of the mate-
rial, based on the usual pliability of cloth. Based on
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(a) (b) (c)

FIGURE 14 | What are the materials of these older spheres? (a) Glass or metal? (b) Wood or stone? (c) Plastic or mud?

(a) (b) (c)

FIGURE 15 | Based just on visual form, which of these drapes would be predicted to be softer to the touch? (a) Cloth drapes. (b) Limestone
‘draperies’ in King Solomon’s Cave, Mole Creek Karst National Park, Tasmania. (c) Concrete cloth.

usual inferences about the rigidity of stone, however,
observers are likely to evidence considerable surprise
at the ‘folded’ forms in Figure 15(b). The limestone
‘draperies’ are surprising, because it is difficult to
imagine spontaneous processes of dripping and ero-
sion that lead to similar forms as folding. Similarly,
observers assume that the folds in Figure 15(c) imply
that the material is flexible and other folds are equally
probable, so it is surprising to realize through touch

that the cloth is as stiff as concrete and the folds
permanent. These ‘surprises’ suggest that conscious
or unconscious visual imagery plays a role in mate-
rial inferences from object shapes.55 By measuring the
degree of expectancy from one state of material to
another, the property of propensity can be exploited
to decouple visual inferences of material qualities from
verbal and semantic connotations, and link them to
physical operations.
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